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Orthocomplemented  Complete  Lattices and Graphs  
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The problem I consider originates from D6rfler, who found a construction to 
assign an orthocomplemented lattice H(G) to a graph G. By D6rfler it is known 
that for every finite orthocomplemented lattice L there exists a graph G such that 
H(G) = L. Unfortunately, we can find more than one graph G with this property, 
i.e., orthocomplemented lattices which belong to different graphs can be 
isomorphic. I show some conditions under which two graphs have the same 
orthocomplemented lattice. 

1. I N T R O D U C T I O N  

Let G = (V, E)  be a simple graph with vertex set V and edge set E. 
First we define an operator R on the set of subsets of V as follows: 

A C V,A :~ 0: R(A) = {v ~ V: [v,w] E E V w  ~ A} 

R(v) = o 

R(0) = V 

This means R(A) is the set of vertices of V which are adjacent to all 

vertices of A. 
Further we consider the operator H defined as 

H :  = R2(A) = R(R(A))  

H is a closure-operator and we say that a subset A C V is H-closed iff 

H(A) = A. The set of all H-closed subsets of V is denoted by H(G).  
Now we know the following: 

Theorem 1. H(G)  ordered by inclusion is an or thocomplemented com- 

plete lattice with R(A) as the or thocomplement  of an H-closed set A. The 
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lattice operations ^ and v are defined by 

A ^ B = A N B for A, B ~ H(G) 

and 

A v B = H(A tO B) for A , B  E H(G) 

By D6rfler (1976) the following is known: 

Theorem 2. For every finite orthocomplemented lattice L there exists a 
graph G such that H(G) = L. 

This means we can represent every orthocomplemented lattice L by a 
graph G = (V, E). But this graph is not uniquely determined. 

Problem. H(GO and H(G2) can be isomorphic for different graphs Gl 
and G2. 

For example the orthocomplemented lattices which belong to the graphs 
shown in Fig. 1 are isomorphic. 

I will show now some conditions under which two graphs Gl and G2 
have the same orthocomplemented lattice L ~ H(GO -~ H(G2). 

2. RESULTS OF DORFLER 
First I note two results already known by D6rfler (1976). 
For the first result we have to define an equivalence relation T on the 

vertex set V as follows: 

Definition 1. Let G = (V, E) be a simple graph. Then the equivalence 
relation T on the vertex set V is defined by vTw iff [v, w] ~ E and every z 
r v, w which is adjacent to one of v and w is adjacent to both. 

{ 2 , 3 , 6 } ~ {  1,4,6} 
{3}~4} 

,V 

3 ~  { 1'3'4~/~{2'5'6} 
3 4 

5 6 
Fig. 1. Two graphs with the same corresponding orthocomplemented lattice. 
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The equivalence classes [v] of the vertex set V are completely discon- 
nected graphs and if v and w are adjacent, then v is adjacent to every vertex 
of the T-class [w]. So we can define the graph G/T with the T-classes as 
vertices and two T-classes [v] and [w] are adjacent iff v and w are adjacent 
in G. 

It is easy to see that the following theorem holds for the two graphs G 
and G/T: 

Theorem 3. The orthocomplemented lattices H(G) and H(G/T) are 
isomorphic. 

Theorem 4. Let G = (V, E) be a connected graph, different from/(2,  
with the following property: The only nontrivial H-closed subsets of V are 
the vertices of degree >-2 and their neighborhoods. Then 

Ho( G) ~- K2 | G 

where Ho(G) results from the Hasse diagram of H(G) by deleting the points 
corresponding to I~ and V,, and G is obtained from G by deleting all pen- 
dant vertices. 

The assumption of this theorem is served by all trees different from K2, 
all circles (7, with n r 4, and all cactuses different from K2 and without any 
block which is a circuit of length 4. This means for two graphs GI and G2 
of the upper structure the orthocomplemented lattices H(GI) and H(G2) are 
isomorphic iff G1 and G2 are isomorphic, which is the second result of D6rfler. 

3. NEW RESULTS 

In the following the set of all nontrivial H-closed subsets of V is denoted 
by H0(G): 

Ho(G) = H(G)\{0,  V} 

Let now A be such a nontrivial H-closed set: A ~ Ho(G). By adding a 
vertex w ~ V we construct the following graph GA: 

GA = (VA, EA) = (V U {w}, E U {[v, w]: v E A}) 

For the nontrivial H-closed sets of GA the following theorem holds: 

Theorem 5. A subset C C VA is related to GA a H-closed set iff 

C e {B: B e Ho(G) A R~(A) ~ B} 

o r  

C e {B U {w}: B e Ho(G) ^ R~(A) C_ B} 
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Proof To prove this theorem we have to divide Ho(G) into two sets 

Hi = {B: B ~ Ho(G) A Ra(A) ~s B} 

/-/2 = {B: B ~ Ho(G) ^ RG(A) C_ B} 

Then we show that for B ~ HI, B is H-closed in GA and for B ~ Hz, 
B t_J {w} is H-closed in GA. 

The second step is to show that C\{w} is an element of H1 if w ~ C 
and an element of H2 otherwise. 

This proof is very easy but too long to write down here. �9 

With the knowledge of Theorem 5 we can assign to each//-closed subset 
of V an H-closed subset of VA as follows: 

{B B if Ra(A) f s  
f(B) = U {w} if Ra(A) C_ B 

This is compatible with the partial order and the orthocomplementation. 
With these results we get the following: 

Theorem 6. The orthocomplemented lattices belonging to G and GA 
are isomorphic. 

The two results of D6rfler I mentioned above are only special cases of 
this theorem. 

I suppose that we can reverse the last theorem. That is, we can reduce 
two graphs with the same orthocomplemented lattice by a construction corres- 
ponding to Theorem 6 to the same graph. 

4. A CONSTRUCTION TO REDUCE GRAPHS 

Because of this supposition I tried to find an algorithm to reduce a 
graph G = (V, E) to the minimal graph. Such a reduction must satisfy the 
following conditions: 

G = (V, E) is reduced to G = (V, E)  with 

if, = E\{[vl, v2]: Yl = V or v2 = v} 

such that: 

1. R({v}) is H-closed in G, too. 
2. R({v}) C V\{v} holds. 
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Such a construction is the following: 
First we look for maximal bipartite subgraphs with components 11 and 

I2. Now we can delete a vertex v from a component, for example, 11, iff: 

1. I i \ {v}  -# 0. 
2. R(lv}) = I2. 
3. R( I i \ {v} )  = 12. 

Example. As an example I will reduce the graph of Fig. 2. A maximal 
bipartite subgraph is the graph with the components 

and the edges 

I1 = { 1 , 5 }  

h = {2, 3, 4} 

[1, 2], [1, 31, [1, 41, [5, 2], [5, 3], [5, 4] 

It is easy to see that the vertex v = 5 satisfies the above three conditions. 
So we can delete this vertex in our first step. The graph remaining consists 
of four vertices. 

Now we repeat the procedure with this graph. We find here a maximal 
complete bipartite subgraph with the components 

I~ = {2, 4} 

I2 = {1,3} 

and the corresponding edges. The vertices of the second component do not 
satisfy the second condition, but both vertices of the first component satisfy 
all three conditions. So we can delete one of them, for example, v = 4. Then 
we get the graph K3. 

This graph cannot be reduced. This means it is our minimal graph. 
Actually we can see that the corresponding orthocomplemented lattice is the 
same as above. 

graph 

1 

l a t t ice  

Fig. 2. Example. 
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